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Developing a theory of low—mass star formation (~ 0.1 to 3 Mg) remains one of the
most elusive and important goals of theoretical astrophysics. The star—formation process is
the outcome of the complex dynamics of interstellar gas involving non-linear interactions of
turbulence, gravity, magnetic field and radiation. The evolution of protostellar condensations,
from the moment they are assembled by turbulent flows to the time they reach stellar den-
sities, spans an enormous range of scales, resulting in a major computational challenge for
simulations. Since the previous Protostars and Planets conference, dramatic advances in the
development of new numerical algorithmic techniques have been successfully implemented
on large scale parallel supercomputers. Among such techniques, Adaptive Mesh Refinement
and Smooth Particle Hydrodynamics have provided frameworks to simulate the process of
low—mass star formation with a very large dynamic range. It is now feasible to explore the
turbulent fragmentation of molecular clouds and the gravitational collapse of cores into stars
self-consistently within the same calculation. The increased sophistication of these powerful
methods comes with substantial caveats associated with the use of the techniques and the
interpretation of the numerical results. In this review, we examine what has been accomplished
in the field and present a critique of both numerical methods and scientific results. We stress that
computational simulations should obey the available observational constraints and demonstrate

numerical convergence.
understanding of low—mass star formation.

1. INTRODUCTION

Most of the stars in the galaxy exist in gravitationallly
bound binary and low-order multiple systems. Although
several mechanisms have been put forth to account for bi-
nary star formation, fragmentation has emerged as the lead-
ing mechanism for the past decade (Bodenheimer et al.,
2000). This point of view has been strengthened by ob-
servatons that have shown that the binary frequency among
pre-main-sequence stars is comparable to or greater than
that among nearby main-sequence stars (Duchene et al.,
1999). This suggests that most binary stars be formed dur-
ing the protostellar collapse phase. Developing a theory
for low mass star formation ( 0.2 to 3 solar masses) with
the goal of understanding the nature and physical proper-

Failing this, results of large scale simulations do not advance our

ties of the formation of binary and multiple stellar systems
remains one of the most elusive and important goals of the-
oretical astrophysics. Until very recently, the extreme vari-
ations in length scale inherent in the star formation process
have made it difficult to perform accurate calculations of
fragmentation and collapse, which are intrinsicially three-
dimensional in nature. Since the last review in Protostars
and Planets IV by Bodenheimer et al., 2000, dramatic ad-
vances in the development of new numerical algorithmic
techniques including adaptive mesh refinement (AMR) cou-
pled with radiation transport and MHD in three dimensions
and Smooth Particle Hydrodynamics (SPH) have been suc-
cessfully implemented on large scale parallel supercomput-
ers to allow significant increases in the dynamic range pos-



sible for the problem of low mass star formation. It is now
feasible to explore the collapse and fragmentation of tur-
bulent molecular clouds down to the formation of turbulent
cores and finally to the formation of stars. In this chap-
ter, we examine what has been recently accomplished in
the field of numerical simulation of low mass star forma-
tion and we critically review what we can believe of the
results of such simulations. The review will not cover pri-
mordial star formation, nor will it address the problem of
high mass star formation which will be addressed in a sepa-
rate chapter by Beauther et al.. Since observations of binary
and multiple star systems provide the crucial constraints of
any theory of low mass star formation, we begin with a brief
summary of the observations of low mass star forming re-
gions.

1.a Key Questions Posed by the Observations

Major observational surveys that are now coming on line
such as COMPLETE (Coordinated Molecular Probe Line
Extinction Thermal Emission) (see Goodman, 2004), will
provide us with a comprehensive statistical database with
which to address key aspects of the star formation process
in two phases, clouds and cores. A unified theory of star
formation will of necessity have to explain how long a star
remains in its birth core?; how long a star remains asso-
ciated with filamentary structure in dark clouds?; what is
the nature of the surrounding environment that a star-disk
system must have to continue its accretion?; what process
delineates the fragmentation of cores into binary or higher
order systems? EXxisting observations of stellar birth sites
within dark molecular clouds at infrared and millimeter
wavelengths have provided us with detailed observational
constraints that must be explained by any theory of low
mass star formation (Lada, 2005). What dictates the ba-
sic properties of the dense cores in Giant Molecular Clouds
(GMCs) with mean densities ~ 104 cm—3, peak densities of
10% cm—3 and typical masses that range from 1-103 M?
How does the frequency distribution of dense core masses
select a power—law such that dn/dm ~ m~=!% (e.g., Lada
etal., 1991). Why is the overall efficiency of star formation
in dense gas ~ 10-20% so much higher than the overall
star formation efficiency in GMCs ~ 1-3% (Myers et al.,
1986)? Recent observation by Lada and Lada, (2003) have
shown that embedded clusters span a range from groups of
10 or more stars to populations exceeding 1000 or more
members with the large majority of stars forming in clus-
ters with 100 members or more. At present, the physi-
cal process of star formation in clusters is not well under-
stood observationally or theoretically. Observations have
elucidated many properties of star forming cores that the-
ory must explain. Larson(1981) first found scaling laws
that established a relationship between the internal veloc-
ity dispersion o1 of star forming regions ranging from 0.1
to 102 pc. and the maximum projected lengthscale on the
sky such that o1 p (kms=1)=1.1L(pc)?-3® interpreted as in-
dicating turbulent motions on the scale of cores over a large

dynamic range. Goodman et al. (1993) surveyed 43 molec-
ular cloud cores in NH3 and were able to estimate the ratio
of the rotational energy to the gravitstional binding energy
3 and found that 3 varied from 103 to 10~! with a mean
value Of .02. The density structure of molecular cores was
determined by observations (Motte and Andre, 2001) con-
cluding that core backgrounds were flatter than predicted by
a singular isothermal sphere (Shu, 1977) but consistent with
Bonnor-Ebert spheres (Bonnor, 1957; Ebert, 1955). An in-
teresting and unexplained feature of these cores that can be
seen from thier maps is the appearance of significant asym-
metry suggestive of turbulent conditions (Fisher, 2002).
Observations studying the multiplicity of stars in star form-
ing regions (Abt and Levy, 1976) and more recent studies
across different star forming regions (Mathieu, 1994; Ghez
et al., 1997; Looney et al., 2000) have enabled comapris-
ons with the multiplicity in the field. These observations,
when correlated against orbital separation and eccenticity
can provide crucial constraints on the properities of stars
resultant from different star formation theories. Correlation
of multiplicity fraction with stellar age can provide clues to
the formation mechanism of multiple systems. Recent ob-
servations of brown dwarfs binaries (Basri, 2000) have re-
vealed the rarity of brown dwarf/stellar systems compared
to the more typical stellar/stellar binaries. This so called
“brown dwarf desert” provides key questions for theoreti-
cal models of multiple star formation. Observations of the
orientation of the disks associated with star formation in
multiple systems (Monin et al., 1998) may provide a power-
ful constraint on theoretical models and indicate if multiple
systems form within geoemtrcally thin flat disks (Boden-
heimer et al., 2000). Studies of the strength of magnetic
fields in regions of star formaiton have shown that molec-
ular clouds are marginally supercrtitical (Crutcher, 1999).
Most simulations to date to date have neglected the effects
of magnetic fields in the formation of binary and multiple
systems. Some recent work that has attempted to include
magnetic fields in 3D simulations (Boss, 1997, 1999, 2002),
but this was included in a very approximate fashion. Shu et
al., 2000 has investigated thew effects of magnetic fields
on the bifucation and fragmentation of singular isothermal
magnetized disks. Observational studies of stellar feedback
in the form of jets, winds and accretion shock luminosity
(snell et al., 1985) provide further constraints on simula-
tions.

A major unsolved problem in the theory of star forma-
tion is that current theory cannot yet accurately predict the
form of the IMF. A successful theory must be able to pre-
dict the initial distribution of stellar masses at birth (stellar
IMF). Typical properties of the stellar IMF can be derived
from detaield studies of the Trapezium cluster in Orion
(Lada, 2005). Meunch et al., (2002) found that the IMF
has a broad peak extending fro 0.6 to 0.1 M ¢ showing that
there are relatively few high mass stars and few substellar
objects. A key observational constraint for a modern theory
of low mass stars is that no more than ~ 22% of all objects
formed are Brown Dwarfs.



1.b Initial Conditions Inferred from the Observations

Besides posing key questions, observations of interstel-
lar clouds provide an insight into the initial conditions of
the process of star formation. Observable physical proper-
ties that can be related to statistical models of star forma-
tion include i) scaling laws of velocity, density and mag-
netic fields; ii) mean relative values of turbulent, thermal,
magnetic and gravitational energies (the normalization of
the scaling laws); iii) general considerations about the mor-
phology of density, velocity and magnetic fields.

Scaling Laws. Larson (1981) found that velocity and
size of interstellar clouds are correlated over many orders
of magnitude in size. This correlation has been confirmed
by many more recent studies (e.g. Fuller and Myers 1992;
Falgarone, Puget and Perault 1992). The most accepted
interpretation is that the scaling law reflects the presence
of supersonic turbulence in the ISM (Ossenkopf and Mac—
Low 2002; Heyer and Brunt 2004). The density may also
scale with size, implying constant surface density on the av-
erage. Starting with the work of Troland and Heiles (1986),
a correlation between magnetic field strength and gas den-
sity, B o< n'/2, has been reported for mean densities larger
than n ~ 100 cm~3. Density and magnetic field scalings
are very uncertain because both quantities are difficult to
measure.

Mean Energies. A normalization of the velocity scaling
representative of large molecular cloud samples is 6V =
1km/s(L/1pc)®4. Assuming an average temperature of
T = 10 K, this normalization corresponds to an rms sonic
Mach number M ~ 5 on the scale of 1 pc, and M, ~ 1 at
0.02 pc. So, on the average, the turbulent kinetic energy is
larger that the thermal energy. The gravitational energy is
in approximate equipartition with the turbulent kinetic en-
ergy on the largest scales, while turbulence dominates the
small scale dynamics. Indirect evidence of super—-Alfvénic
dynamics in giant molecular clouds has been presented by
Padoan and Nordlund (1999) and Padoan et al. (2004), sug-
gesting that on the average the magnetic energy has an inter-
mediate value, between the thermal and the kinetic energies.
The situation within dense prestellar cores is rather different
from this average values of the turbulent cascade. Observa-
tions suggests that in dense cores gravitational, kinetic, ther-
mal and magnetic energy are all comparable. However, the
magnetic energy is very difficult to estimate. Accounting
for both detections and upper limits, there is a large disper-
sion in the ratio of magnetic to gravitational energy of dense
cores (Crutcher et al. 1993; Crutcher et al. 1999; Bourke
et al. 2001; Nutter et al 2004). In the case of large scale
super—Alfvénic turbulence, this dispersion and the B-n re-
lation are predicted to be real (Padoan and Nordlund 1999).

Morphology. The morphology of molecular clouds has
been often described as fractal (e.g. Elmegreen and Fal-
garone 1986; Youngung 2004) or multi—fractal (Chappell
and Scalo 2001). Very small unbound clumps have been
detected that are not the result of gravitational instabili-
ties and are consistent with a turbulent origin (Falgarone,

Puget and Perault 1992; Langer et al. 1995). Large scale
velocity—column density correlations from molecular line
surveys of giant molecular clouds also suggest a turbulent
origin of the observed density enhancements (Padoan et
al. 2001). Dense prestellar cores have been studied with
molecular line transitions and FIR and sub—mm continuum,
to relate their morphology to star—formation theories. Cores
are elongated and generally triaxial (Jones and Basu 2002),
their density profiles are flat near the center, steeper at larger
radii, and may show very sharp edges (e.g. Bacmann et al.
2000). The relative geometry of cores and magnetic field is
generally not the one predicted by standard star—formation
models (Ward—Thompson et al. 2000). A few cores with
density profiles predicted by simple equilibrium consider-
ations are known (Alves, Lada and Lada 2001; Keto and
Field 2005), but radial density profiles may offer an over-
simplified picture of the cores, being the result of two pro-
jections (line of sight and azimuthal). Indeed, Ballesteros-
Paredes et al. (2003) have shown that even collapsing or
rebounding cores may be exhibit Bonnor-Ebert like pro-
files, with the result that the temperature estimated from a
Bonnor-Ebert analysis may be wrong by a factor of 10.

In summary, observations of molecular clouds and cores
provide important constraints for initial conditions that nu-
merical simulations of star formation should account for.
Large scale simulations should be consistent with the tur-
bulent nature of the ISM. On the scale of giant molecu-
lar clouds, the turbulence is on the average supersonic and
super—Alfvénic and its kinetic energy is roughly equal to the
cloud gravitational energy. Properties of dense cores are not
considered as initial conditions for large scale simulations,
because they should emerge self-consistently from the sim-
ulations. On smaller scale, simulations of the evolution of
dense prestellar cores may assume a rough equipartition of
kinetic, magnetic and gravitational energies, triaxial mor-
phologies and shallow central density profiles. However,
simulations of the collapse of individual cores should not
be inconsistent with the large scale dynamics, which may
be achieved for example by exploring a large range of ini-
tial and boundary conditions.

2. A BRIEF SURVEY OF LOW-MASS STAR FOR-
MATION MECHANISMS

Although much progress in numerical simulation of col-
lapse and fragmentation has been made in the intervening 6
years since PPIV, a self-consistent theory of binary and mul-
tiple star formation that addresses the key observations is
still not at hand. In this section we will give a brief overview
of some of the dominant mechanisms for low mass star for-
mation. A critical review of detailed simulations of the
leading theories will be presented in section 1V.

As has been previously discussed by Bodenheimer et al.,
2000, binary formation and multiple formation can occur
through the processes of (i) capture, (ii) fission, (iii) prompt
initial fragmentation, (iv) disk fragmentation and (v) frag-
mentation during the protostellar collapse phase. To these



we may add more recently developed processes such as the
bifurcation of strongly magnetized isopedic disks to multi—
lobed equilibrium structures and competitve accretion. The
reader is referred to Bodenheimer et al., 2000 for a review
of (i)—(iii). Here we will briefly review the dominant mech-
anisms.

A recent mechnaism for multiple star formation has been
put forth by Shu et al., (2000) and Galli et al., (2001).
They develop equilibrium models of strongly magnetized
isopedic disks and explored their bifurcation to non-axi—
symmetric, multi-lobed strcutures of increasing rotation
rates. Fisher(2002) has pointed out possible problems with
this mechanism. The rotational 3 that the model transitions
to a binary structure is .16, considerably higher than ob-
served median values of .02. The models predict that disks
which form will all be exactly aligned in contradiction to
observations that show nonalignment in some disks(Monin
et al.,1998). The model requires the magnetic field to be
lost on a dynamical timescale subsequent to multiple for-
mation. This is believed to be possible on at high densities
suggesting that the model is relevant only for short—period
systems. Finally, the model has only been explored for 2D
without turbulence. These conditions are too simplistic for
star forming regions.

Disk fragmentation from gravitational instability can re-
sult in multiple systems in an equilibrium disk if the mini-
mum Toomre Q parameter falls below = 1. However, Bo-
denheimer et al., 2000, have pointed out that the required
initial conditions to drive Q < 1 may not be easily realized
since the mass accretion timescale is significantly longer
than the dynamical timescale throughout most of the evo-
lution of the protostar. Disk fragmentation plays a key role
in one of the theories of the formation of Brown Dwarfs
(BDs). This scenario, known as the "failed embryo” sce-
nario begins with a gravitationally unstable disk surround-
ing a protostar which subsequently fragments into a num-
ber of substellar objects. A variant of this mechanism relies
upon the observation that if the crossing time of the cluster
of embryos is much less than the free—fall time of the of the
collapsing core, one or more of the members will be rapdily
ejected forming a BD (Reipurth and Clarke, 2001). As the
protostellar disk fragments interactions among the forming
BDs rapidly eject them from the disk resulting in stripping
the BDs of their surrounding disk material. Recent sim-
ulations of the evolution of turbulent cores, all performed
with SPH (Bate et al., 2002,2003;Delgato-Donate et al.,
2004; Goodwin et al., 2004a,b) show multiple fragmenta-
tion (N > 5 — 10) of circumstellar disks and rapid ejection
of BDs resulting in an exceess of BD and low mass com-
panions. Increasingly, observational evidence of BD clus-
tering (Duchéne et al.,2004) , Ly—« signatures (Jayaward-
hana et al., 2002) and disk frequencies (Mohanty et al.,
2004) is showing major obstacles for the failed embryo
scenario. Goodwin and Kroupa(2005) have considered the
constraints on the number of stars that can form within a
core posed by the decay or high—order multiple systems.
They show that to be consistent with observations, cores

must produce only 2 or 3 stars in contrast with the multi-
ple fragmentation of disks resulting from virtually all SPH
simulations. Fisher et al. (2005) have performed high res-
olution, converged AMR simulations of the collapse turbu-
lent cores and in contrast to the SPH simulations find no
evidence of disk fragmentation. These studies will be dis-
cussed and contrasted with SPH simulations in detail in sec-
tion IV.

Currently, there are two dominant models of star for-
mation. Gravitational collapse theory suggests that star—
forming turbulent molecular clumps, typically hundreds to
thousands of M ® in mass, fragment into cores that even-
tually collapse to make individual stars or small multiple
systems (Shu et al., 1987; Padoan and Nordland, 2002).
In contrast, competitive accretion theory suggests that at
birth all stars are much smaller than the typical stellar mass
and that final stellar masses are determined by the subse-
quent accretion of unbound gas from the clump (Bonnell
et al.,1998; Bonnell et al., 2001; Bonnell et al,2001a; Bate
et al., 2005). Competitive accretion has suggested that BDs
and free—floating planets are protostars ejected from clumps
and predicts they should be stripped of their disks, have
high velocity dispersions, form in dense star forming clouds
and have a mean steller mass that should vary through the
Galaxy(Bate et al.,2005). Recent observations however
are increasingly ruling against competitive accretion theory.
Mohanty et al.(2005) using Echelle spectra has discovered
several BDs with associated disks contradicting competive
accretion predictions and observations have failed to find
any variation in typical stellar mass with environment, again
in contrast to competive accretion. Recent theoretical work
by Krumholz et al. (2005a) based on detailed simulations of
Bondi—Hoyle accretion in a turbulent medium (Krumholz et
al., 2005b) have determined in what types of environments
compertive accretion can occur and show that no observed
star—forming regiosn produce signinficant cpompetive accre-
tion, and that simulations that show comperitive acceretion
come to this result because their properties differ substan-
tially from those determined by observation. Their results
explain why observations have failed to confirm the key
predictions of the competitive accretion picture and appear
to deal a serious blow to the competive accretion scenario
pointing to gravitational collapse and fragmentation of tur-
bulent clouds as the emerging dominant mechanism of low
mass star formation.

3. THE SIMULATION OF LOW-MASS STAR
FORMATION

3.a Physical Processes Necessary for Detailed Numerical
Simulation

3.a.1 Turbulence

The Reynolds number estimates the relative importance
of the nonlinear advection term and the viscosity term in
the Navier—Stokes equation, Re = Vi Lo /v, where Vj is the
flow rms velocity, L is the integral scale of the turbulence



(say the energy injection scale) and v is the kinematic vis-
cosity that we can approximate as v ~ vy, /(on), where vy,
is the gas thermal velocity, n is the gas mean number den-
sity and o ~ 1016 cm? is the typical gas collisional cross
section. For typical molecular cloud values, Re ~ 107,
which implies flows are highly unstable to turbulence. It is
hard to exaggerate the importance of turbulent gas dynam-
ics in astrophysical processes, as turbulence is a dominant
transport mechanism. Turbulence is especially important in
molecular clouds, where it is also a dominant fragmentation
mechanism, because of its large Mach number and the short
cooling time of the gas.

There has been significant progress in our understanding
of supersonic turbulence in recent years. Phenomenological
models of the intermittency of incompressible turbulence
(e.g. She and Leveque 1994; Dubrulle 1994) have been ex-
tended to supersonic turbulence by Boldyrev (2002) and the
predictions of the model have been confirmed by numerical
simulations (Boldyrev, Nordlund and Padoan 2002, Padoan
et al. 2004). The intermittency correction is small for the
exponent of the velocity power spectrum (corresponding to
the second order velocity structure function) and large only
at high order. However, Boldyrev, Nordlund and Padoan
(2002) have shown that low order density correlators are
dependent on high order velocity statistics, so intermittency
is likely to play a significant role in turbulent fragmenta-
tion, despite being only a small effect in the velocity power
spectrum.

Because the turbulence is a dominant fragmentation and
transport mechanism, its correct description is of paramount
importance for simulations of molecular cloud fragmenta-
tion into low mass stars. At present, the least dissipative
numerical codes and the most powerful supercomputers can
only achieve a Reynolds number lower than Re ~ 104.
This means that the scale of turbulence dissipation is much
larger in numerical simulations (of order the computational
mesh size) than in nature (~ 104 cm). However, the
ratio of the Kolmogorov dissipation scale and the Jeans
length, for typical conditions in molecular clouds, is very
small and remarkably independent of temperature and den-
sity, 7x /Ay ~ 10~4(T/10K)~*/#(n/103cm=3)~1/4, This
shows that it may be possible to successfully simulate the
process of star formation without resolving numerically
the Kolmogorov dissipation scale, unless the nature of tur-
bulent flows varies dramatically between Re ~ 102 and
Re ~ 107.

However, numerical simulations of large scale fragmen-
tation are still required to i) generate a sizable inertial range
(a power law power spectrum of the turbulent velocity over
an extended range of scales); ii) provide a Jeans length
larger than scales where dissipation is significant. Numer-
ical dissipation becomes significant in turbulence simula-
tions well above the mesh size. Velocity power spectra,
even in the least dissipative codes, start to decay with in-
creasing wavenumber faster than a power law already at ap-
proximately 15 to 30 times the Nyquist frequency. To sat-
isfy the above requirements, the Jeans wavelength and outer

scale of the turbulence should be larger than approximately
30 times and 300 times the Nyquist frequency respectively.
This translates into a minimum mean Jeans length of ap-
proximately 60 computational zones and a minimum com-
putational box size of at least 1,0002 computational zones,
for a grid code. Assuming the standard SPH kernel of 50
particles this corresponds to at least 50 x 1,0003 particles
to describe the density field, and at least fewx 1, 0003 parti-
cles to describe the velocity field, if a Godunov SPH method
is used (see below).

Grid code simulations are only recently starting to
achieve this dynamical range, while particle codes appear
unsuitable to the task. The calculation of Bate, Bonnell and
Bromm (2003) has 3.5 x 106 particles, more than four or-
ders of magnitude below the above estimate and therefore
not adequate to describe the process of turbulent fragmenta-
tion. As turbulent fragmentation has become a fashionable
research field, one should be very cautious with studies
claiming to directly test the effect of turbulence on star for-
mation using numerical simulations with resolution well
below the above estimates. This warning applies to most of
the numerical studies of large scale turbulent fragmentation
cited in this book.

3.a.2 Gravity

Jeans Condition Jeans (1928) analyzed the linearized
equations of 1-D isothermal self-gravitational hydrody-
namic (GHD) for a medium of infinite extent and found
that perturbations on scales larger than the Jeans length,
Aj = (%;2)1/2, are unstable. Thermal pressure cannot
resist the self-gravity of a perturbation larger than X 5, and
runaway collapse results. Truelove et al., 1997 showed that
the errors generated by numerical GHD solvers can act as
unstable perturbations to the flow. In a simulation with
variable resolution, cell-scale errors introduced in regions
of coarser resolution can be advected to regions of finer res-
olution, affording these errors the opportunity to grow. The
unstable collapse of numerical perturbations can lead to
substantial fragments, a process termed artificial fragmen-
tation. The strategy for avoidance of artificial fragmenta-
tion is to maintain sufficient resolution of A ;. Defining the
Jeans number J = f—j, Truelove et al., 1997 found keep-
ing J < 0.25 avoided artificial fragmentation in isothermal
evolution of a collapse spanning 7 decades of density, the
approximate range separating typical molecular cloud cores
from nonisothermal protostellar fragments. The constraint
that \; be resolved is termed the Jeans condition by Tru-
elove et al. and they were the first to introduce this crucial
condition into finitie difference simulations. The Jeans con-
dition arises because perturbations on scales above \ ; are
physically unstable, and discretization of the GHD PDEs
introduces perturbations on all scales above Ax. It is es-
sential to keep the \; as resolved as possible in order to
diminish the initial amplitude of perturbations that exceed
this scale. Although it has been shown to hold only for
isothermal evolution, it is reasonable to expect that it is nec-
essary (although not necessarily sufficient) for nonisother-



mal collapse as well where the transition to non—isothermal
evolution may produce structure on smaller scales than the
local Jeans length. .

As a side effect of confining cell-sized perturbations to a
length scale at which they are thermally damped, resolution
of A\, also ensures that gradients developed in isothermal
flow by gravity are well resolved. Formation of structure
on scales of A\ ; and larger is a general feature of isothermal
GHD flow since smaller fluctuations are damped but larger
ones collapse. Lack of resolution of gradients within sim-
ulated flow triggers the injection of artificial viscosity. In-
troducing excess amounts of artificial viscosity renders the
problem solved different from the inviscid problem posed.
Continuous resolution of X 7, however, keeps the flow invis-
cid and prevents artificial slowing of gravitational collapse.

Runaway Collapse The self-gravitational collapse in
nearly spherical (i.e., three-dimensional) geometry tends
to show a so-called “runaway collapse,” where the denser
central region collapse much faster than the less-dense sur-
rounding region, decreasing the mass of that faster collaps-
ing central region. The reason for this “runaway” can be
found even in the simple formula of the free-fall time of
a spherical object, tg = 350’—2;,)7 where p should be re-
garded as the mean density. The collapse timescale of
the dense cental region is shorter than that of less-dense
envelope, which makes the density profile more centrally
peaked. A typical evolution of density profile can be seen
in a well-known self-similar solution (Larson 1969, Pen-
ston 1970). The mass of the central fast collapsing region
always stays on the order of Jeans mass M; = pA3 ~

G—3/2C3/? p=1/2, which decreases monotonically in this
runaway stage. Thus, the description of this phenomena
requires increasingly higher resolution, not only on spatial
scale but also on the mass scale. Obviously, an accurate de-
scription is not gurranteed even in SPH-like methods that is
based on Lagrangian particles.

The end of runaway stage corresponds to the decelera-
tion of gravitational collapse. The pressure force and grav-
ity force (per unit mass) scale with the radius of homolo-
gously collapsing sphere as Fp = —%%—f xr 32 Fo =
GM « =2, where ~ is the effective specific heat (P o« p?).
If v becomes larger than v, = 4/3, the increased pressure
can decelerate the gravitational collapse.

3.a.3 Magnetic Fields

The magnetic field (B-field) increases the core crit-
ical mass for gravitational collapse, as it provides ad-
ditional support besides thermal pressure. The maxi-
mum stable mass is the Bonnot—Ebert mass, Mgg =
1.18¢4/G3/2pl/2  assuming thermal pressure support (Bon-
nor 1956; Ebert 1957), while it is proportional to the mag-
netic flux, Mpy., ~ ®p5/27G'/2, assuming magnetic
support. Detailed self-consistent calculations account-
ing for both thermal and magnetic support (Mouschovias
& Spitzer 1976; Tomisaka et al. 1988) show that the
maximum stable mass can be expressed as Mmag max ~

—3/2
Mgg {1 - [0.17/(G1/2M/<I>)C]2} " where (M/®),
is the central mass-to—flux ratio. A similar formula
was proposed by McKee (1989), Miag max ~ Mg +
(I)B/QTFGUQ.

Further support is provided by rotation. For a core
with specific angular momentum 5, the maximum stable
mass is given by Myax ~ [M2 ., max + (4.8¢55/G)?] 1z
(Tomisaka et al. 1989). The dynamical runaway collapse
begins when the core mass exceeds this maximum stable
mass (magnetically supercritical cloud). Quasi-static equi-
librium configurations exist for cores less massive than the
maximum stable mass. The evolution of these subcritical
cores is controlled by the processes of ambipolar diffusion
and magnetic braking, both of which have longer timescales
than the gravitational free fall.

The ionization fraction in molecular clouds is very low,
because of their high opacity to ionizing photons, and con-
trolled primarily by cosmic rays. The predominantly neu-
tral gas is coupled to the B-field only indirectly, through
friction with ions and charged dust grains (see Nakano
1984). This indirect coupling is the reason for the process
of ambipolar diffusion, that is the relative motion between
the neutral gas and the charged ions and grains attached to
the B-field. Due to the interplay of pressure and gravita-
tional forces, magnetic flux and charged components can
gradually escape the central region of a dense core, thus
increasing the mass—to—flux ratio and decreasing the maxi-
mum stable mass. Ambipolar diffusion can therefore turn a
magnetically subcritical core into an unstable supercritical
one.

The frictional force is proportional to the ion-neutral
drift velocity, vp, F' = vaT,;.l, where 7,,; is the mean
collision time of a neutral particle with ions. While in
a static configuration the gravitational force is balanced
by magnetic forces (besides thermal pressure), in a con-
figuration contracting under the effect of ambipolar drift
one may assume that the gravitational force is roughly
balanced by the frictional force. With this assumption,
the timescale for magnetic flux loss from a quasi-static
high—density core with a scale-height of R is given by
™ ~ Rj/vp ~ R/[FTni/p] ~ T2/Tni, Where 7g is the
free—fall time (Mouschovias 1989; Tomisaka et al. 1990).
Thus, the ambipolar diffusion time scale is much longer
than the free—fall time scale: 7p ~ 15.7(Gp.)" /% ~
43 Myr(pe/2 x 10-2'g em=3)~1/2, where the density of
ions is assumed to be o< p'/2. As the core contracts, the
density grows and, when n > 10'2cm—3, the magnetic field
is effectively decoupled from the gas. At these densities,
Joule dissipation becomes important and particle drifts are
qualitatively different from ambipolar diffusion (Nakano et
al. 2002).

The B-field is also responsible for transfer of angu-
lar momentum in magnetized rotating cores, by a pro-
cess called magnetic braking. Magnetic breaking is
caused by the azimuthal component of the Lorentz force
(j x B)g. In the case of a core rotating in a static



medium with uniform density, pamb, and uniform B-
field, B.ub, a torsional Alfvén wave transfers angular
momentum from the core to the ambient medium. The
magnetic braking timescale of a core with column den-
Sity Yeore IS giVeN by 7 ~ (47/pamb)/*Zecore/ Bamb ~
IMGyr(M/5Mo)(R/0.3pc) % (pamb /10~ g cm %) ~1/2
(Bamb/30pG)~1  (Mouschovias & Paleologou 1980).
Since the toroidal B-field is amplified from the poloidal one
in the rotating core, a strong rotational motion induces an
effective magnetic braking and angular momentum transfer.
In the evolution of subcritical cores, the magnetic braking
is important during the quasi—static contraction phase con-
trolled by the ambipolar diffusion (Basu and Mouschovias
1994). In the dynamical runaway collapse, the rotational
speed is smaller than the inflow speed (Tomisaka 2000)

3.a.4 Outflows

The B-field plays crucial roles in the star formation pro-
cess, one of which is generating an outflow. Magnetohy-
drodynamical simulations of the contraction of the molec-
ular cores (Tomisaka 1998, 2000, 2002; Allen et al. 2003;
Banerjee & Pudritz 2005) have shown that after the forma-
tion of the first core the gas rotates around the core, the
toroidal B-field is induced and thus the magnetic torque
transfers the angular momentum from the disk-midplane
to the surface. The gas which has received enough an-
gular momentum compared with the gravity is ejected by
the excess centrifugal force, which is called “magnetocen-
trifugal wind mechanism” (Blandford & Payne 1982), along
the magnetic field line squeezed by the laterally contracting
disk. In the case of weak B-field, magnetic pressure gradi-
ent of the toroidal B-field accelerates the gas and the out-
flow forms in the perpendicular direction to the disk. The
axisymmetric 2D simulations show that (1) at least 10% of
the accreted mass is ejected; (2) angular momentum has re-
duced a factor 10~* from that of the parent cloud at the
age of ~ 7000yr from the core formation. This resolves
the problem that the excess angular momentum should be
removed in the course of star formation (Tomisaka 2000).
In 7000 yr from the first core formation, mass of the core
reaches ~ 0.1M, and the outflow extends to a distance
from the core of ~ 2000AU with a speed of ~ 2kms !
(Tomisaka 2002). If the accretion continues and the core
mass grows to one solar mass, the outflow expands and its
speed is accelerated further. After the first core is frag-
mented into binary or multiple cores, each fragment spins
and multiple outflows are ejected (Machida et al. 2004;
Ziegler 2005).

3.a.5 Thermal Budget

Low Density Regime In the low density regime the gas
temperature can be determined by equating gas cooling and
heating rates (e.g. Juvela, Padoan & Nordlund, 2001). The
heating is usually assumed to be from cosmic rays, but am-
bipolar drift heating in turbulent clouds can also contribute
significantly (Padoan, Zweibel & Nordlund, 2000). Above
a gas density of 10*~10° cm—3, gas and dust grains are ther-

mally coupled. The thermal balance of dust grains can be
described by the equation 4wkpl + 'y = drkposgT? =
Atnin, Where s, I, I'y denote the opacity, the intensity of
interstellar radiation field, and the heating rate due to col-
lision with gas respectively. With typical ISM parameters,
the above equation gives T' ~ 10 K. The strong temperature
sensitivity of the cooling rate makes the dust grains (hence
the gas) nearly isothermal. During the gravitational col-
lapse, gas and dust are isothermal until a density of 1010~
10'1 cm~3, when the compressional heating rate becomes
larger than the cooling rate.

High Density Regime The further evolution of a col-
lapsing core and the formation of a protostar are radiation—
hydrodynamical (RHD) processes that should be modeled
by solving radiation transfer and hydrodynamics simultane-
ously in multi dimensions. The most sophisticated multi—
dimensional models are based on the (flux—limited) diffu-
sion approximation (Bodenheimer et al. 1990, Krumholtz
et al. 2005).

Based on results of detailed radiative transfer compu-
tations in spherical symmetry (Larson, 1969; Winkler &
Newman 1980; Masunaga et al., 1998; Masunaga & In-
utsuka 2000a,b) we can outline the following stages. Once
the compressional heating dominates the radiative cooling,
the central temperature increases gradually from the ini-
tial value of ~ 10 K. The initial slope of the tempera-
ture as a function of gas density corresponds to an effec-
tive ratio of specific heats v = 5/3: T(p) x p2/3 for
10K < T < 100K. This monatomic gas property is due
to the fact that the rotational degree of freedom of molecu-
lar hydrogen is not excited in this low temperaure regime:
eg., E(J = 2 —-0)/kp = 512K. When the tempera-
ture becomes larger than ~ 102K, the slope corresponds
to v = 7/5, as for diatomic molecules. This value of v is
larger than the minimum required for thermal pressure sup-
port against gravitational collapse: v > ~yait = 4/3.
The collapse is therefore decelerated and a shock is formed
at the surface of a quasi—adiabatic core, called “the first
core”. Its radius is about 1 AU in spherical symmetric mod-
els, but can be significantly larger in more realistic multi—
dimensional models. It consists mainly of H,. The increase
of density and temperature inside the first core is slow but
monotonic. When the temperature becomes > 103K, the
dessociation of H, starts. The binding energy of Hs is about
4.5 eV, much larger than the thermal energy per hydrogen
molecule in this temperature regime. Therefore the desso-
ciation of Hy acts as an efficient cooling of the gas, which
makes v < 4/3, triggering the second dynamical collapse.
In this second collapse phase, the collapsing velocity be-
comes very large and engulfs the first core. As a result, the
first core lasts only for ~ 103 years. In the course of the
second collapse, the central density attains the stellar value,
p ~ 1glcc, and the second adiabatic core, or “protostar”, is
formed. The time evolution of the SED obtained from the
self-consistent RHD calculation can be found in Masunaga
& Inutsuka (2000a).

Core Fragmentation Stability analysis of rotating poly-



tropic gas shows that gas with the rotation-to-gravitational
energy ratio 7'/|W| > 0.27 is unstable for non-axisymmetric
perturbations (for example, Imamura et al. 2000). Assum-
ing a barotropic equation of state representing the thermal
energy budget, nested grid hydro simulations (Matsumoto
& Hanawa 2003) show that the first-core disk increases
in T/|W| by mass accretion. If the first-core disk rotates
fast enough as the angular speed x free-fall time exceeds
Q.(47Gp.)Y/? > (0.2 — 0.3), fragments appear and grow
into binaries and multiples in the first core phase. The
non-axisymmetric nonlinear spiral pattern can transfer the
angular momentum of the accreting gas.

B-field affects the rotation motion (magnetic braking)
and thus fragmentation. Whether B-field stabilizes the
first core against the fragmentation or not (Machida et al.
2005b; Ziegler 2005) is attracting attention in relation to the
binary formation. The runaway collapse conserves 2-to-B
ratio. (As long as the core contracts in a spherical fashion,
conservations of angular momentum and magnetic flux re-

quire Q. and B. to increase  p2/*. Both Q and B increase
proportional to the column density, after a disk is formed
perpendicular to © and Bis contracting laterally. Thus,
the runaway collapse conserves §2-to-B ratio.) In order to
achieve enough rotation to fragment, the initial Q-to-B ra-
tio must satisfy the condition (Q/B) i > 0.39G?¢c, ~
1.7 x 1077(¢s/0.19kms~ 1)~ 1uG~1, (Machida et al.
2005b).  Simulations show that increasing the B-field
strength, fragmentation is stabilized by the suppression
of rotation motion by the magnetic braking. Boss (2002)
predicted contrarily. However, it should be noted that this
comes from the fact that his model equation is not fully
consistent with MHD and magnetic braking is not taken
into account.

3.a.6 Radiative Transfer in Multi-Dimensions

Radiation transport has been shown to play a significant
role in the outcome of fragmentation to binary and multiple
systems for low mass star formation (Boss et al., 2000) as
well as determining the limiting mass in high mass star for-
mation in both 2D (Yorke & Sonnhalter, 2002); and more
recently in the first 3D simulations (Krumholz et al.,2005).
The strong dependence of the evolution of the isothermal
and nonisothermal cloud models on the handling of the
cloud’s thermodynamics implies that collapse calculations
will need to treat the thermodynamics accurately in order
to obtain the correct solution (Boss et al., 2000). Because
of the great computational burden imposed by solving the
mean intensity equation in the Eddington approximation,
which increases the computational time by a factor of 10
(or more) during the latter phases of collapse, it is tempt-
ing to sidestep the Eddington approximation solution al-
together and employ a simple barotropic prescription de-
signed to mimic the behavior of the Eddington approxima-
tion (e.g., Boss, 1981; Bonnell, 1994; Bonnell and Bate,
1994a,; Burkert et al., 1997; Klein et al., 1999). Boss et al.
(2000) have demonstrated this is problematical. By mak-
ing detailed comparisons of cloud collapse and fragmenta-

tion of Gaussian peaked clouds with both the barotropic ap-
proximation and an implementation of radiation transport
in the Eddington approximation, they show that the out-
come of such a collapse can be a single star in the former
approximation and a binary or triple system in the latter.
The differences occur because the barotropic approxima-
tion (a stiffened equation of state) assumes that the cou-
pled self-gravitating, radiation—hydrodynamical equations
can be closed by specifying the thermal properties of the
soley as a function of density; that is the specific entropy
of the gas depends strictly on the density. In reality, the
specific entropy of the a gas particle depends on the ther-
mal history of the parcel, so that while the temperature field
tends to follow the density field, it is not an exact corresp-
sondance and the temperature in reality is determined not
only by adiabatic compression, but by compressional heat-
ing in a 3D volume with a strongly varying optical depth.
Thus in reality, the temperature dependence cannot be rep-
resented with a simple barotropic approximation with any
great accuracy and radiative transfer must be used. We dis-
cuss the various methods of radiation transport in section
3.b6.

3.b Methodology of Numerical Simulations

3.b.1 Complexity of the Problem of Low Mass Star For-
mation

The overriding grand computational challenge for simu-
lations to develop a predictive theory of low mass star for-
mation is that star formation occurs in clouds as a result
of the force of gravity over a huge dynamic range of spa-
tial scales, with different physical mechanisms playing dif-
ferent degrees of importance on varying scales. The gas
densities in these clouds themselves vary over many or-
ders of magnitude. Gravity, turbulence, radiation and mag-
netic fields all contribute to the delicate balance of forces
that result in gravitational collapse and fragmentation of
clouds, clumps and cores to produce stars. Thus the prob-
lem becomes one of treating multi-scale, multi—physics
where the physics is highly coupled over the large range
of scale. To develop a feel for the range of scale a sim-
ulation must trarverse, we can consider the internal struc-
ture of GMCs as hierarchical, consisting of smaller sub-
units within larger ones (Elmegreen et al., 2000). GMCs
vary in size from 20-100 pc., in density from 50-100 H
cm—3 and mass 104-10% M. Self—gravity and turbulence
are equally important in controlling the structure and evolu-
tion of these clouds. Magnetic fields are likely to play and
important role as well (Heiles et al., 1993; McKee et al.,
1993). Cruthcher (1999) has suggested that there may be an
equipartition between the magnetic energy and the turbulent
energy in molecular clouds implying that a combination of
static magnetic fields and MHD turbulence might together
support the clouds against gravity. Embedded within the
GMC:s are dense clumps which may form clusters of stars.
These clumps are few pc. in size, masses of a few thou-
sand M, and mean densities ~ 103 Hy cm~2. The clumps



have dense core substructures with radii ~ 0.1pc., densities
10%-10% H, cm~2 and a masses that range from 1 to sev-
eral Mg. These cores likely form individual stars or low
order multiple systems. Turbulence and magnetic fields are
likely to play important roles alongside gravity in fragment-
ing molecular clouds into the observed star-forming cores.
The role of MHD turbulence has been investigated by nu-
merical simulation in 2D and 3D (Ostriker et al., 1999;
Vasquez—Semadeni et al., 2000; Ballesteros—Paredes, 2003;
Mac Low and Klessen, 2003; Nordland and Padoan, 2003).
Using a computational domain that starts from dense tur-
bulent clumps within GMCs (R ~ 2 pc.) and evolves the
simulation through the isothermal core formation and col-
lapse phase into the regime where density peaks become
opaque to the thermal radiation from the dust grains at den-
sities 2 x 1019 Hy cm—3 and through to the formation of the
first hydrostatic core at densities of 1013 Hy cm~3 requires
an accurate calculation across 10 orders of magnitude of
density and 4-5 orders of magnitude on spatial scale. This
would require a resolution of about 10 AU, enough to re-
solve 100 AU separation binaries. To follow the collapse
all the way to an actual star would require a further 10
order of magnitude increase in density and 2-3 orders of
magnitude further spatial collapse. Clearly such extraor-
dinary computational demands rule out fixed grid simula-
tions entirely and require highly accurate dynamic regrid-
dung strategies or SPH approaches that can maintain the
resoltuion required by the numerical Jeans criterion (Tru-
elove et a., 1997) throughout space for all time.

3.b.2 Smooth Particle Hydrodynamics

The description of the gravitational collapse requires a
large dynamic range of spatial resolution, and thus, one
of the efficient ways for this is to use Lagrangian meth-
ods. Smoothed particle hydrodynamics (SPH) is a fully La-
grangian particle method designed for describing compress-
ible flud dynamics. This method is economical in handling
hydrodynamic problems that have large (almost) empty re-
gions. A variety of astrophysical problems including star
formation (see, e.g., Goodwin et al. and Whitworth et al. in
this volume) have been studied by SPH because of its sim-
plicity in programming two- and three-dimensional codes
and its versatility of incorporating various physical effects,
such as self-gravity, radiative cooling, and chemical reac-
tions. A broad discussion of the method can be found in
a review by Monaghan (1994). In order to further increase
the dynamic range of spatial resolution, Kitsionas and Whit-
worth (2002) introduced particle splitting, which is an adap-
tive approach in SPH.

The “standard” SPH formalism adopted artificial viscos-
ity that mimics the classical von-Neumann Richtmeyer vis-
cosity, so that it tends to give poor performance in describ-
ing strong shocks. In the two- or three-dimensional cal-
culation of colliding gases, standard-SPH particles often
penetrate to the opposite side. This unphysical effect can
be partially eliminated by the so-called XSPH prescription
Monaghan (1989) which does not introduce the (required)

additional dissipation but results in additional dispersion
of the waves. As a more efficient method for handling
strong shocks in the SPH framework, so-called “Godunov
SPH” is proposed by Inutsuka (2002) who implemented the
exact Riemann solver in the strictly conservative particle
method, and used in the collapse and fragmentation of self-
graviatating objects (Tsuribe and Inutsuka 1999; Cha and
Whitworth 2003a,b).

The implementation of self-gravity in SPH is relatively
easy, and one can use various acceleration methods, such as
Tree-Codes, and special purpose processors (e.g., GRAPE
board). The flux-limited diffusion radiative transfer is in-
corporated in SPH by Whitehouse and Bate (2004) and
Bastien, Cha, and Viau (2004).

Some of the authors are now using “sink particles” to
follow the subsegent evolution even after protostars are
formed (see Krumholtz et al., 2004 for the corresponding
technique in Eulerian grid-based method). This is a pre-
scription to continue the calculations without resolving the
phenomera around the stellar objects that have extremely
short timescales. The validity of various treatment of the
sink particles are discussed in literature, but seems to re-
main controversial.

3.b.3 Fixed grid Hydrodynamics

Since the time of its introduction, the numerical code
of choice for supersonic hydrodynamic turbulence has been
the Piecewise Parabolic Method* (PPM) of Colella and
Woodward (1984). PPM is based on a Rieman solver
(the discretized approximation to the solution is locally ad-
vanced analytically) with a third order accurate reconstruc-
tion scheme, which allows an accurate and stable treat-
ment of strong shocks, while maintaining numerical vis-
cosity to a minimum away from discontinuities. Because
the physical viscosity is neglected (PPM solves the Euler
equation), large scale PPM flows are characterized by a
very large effective Reynolds number (Porter and Wood-
ward 1994). Direct numerical simulations (DNS) of the
Navier—Stokes equation, where the physical viscosity is ex-
plicitly computed, require a linear numerical resolution four
times larger than PPM to achieve the same wave—number
extension of the inertial range of turbulence as PPM (Sytine
et al. 2000). From this point of view, therefore, PPM has a
significant advantage over DNS codes, which are generally
designed for incompressible turbulence anyway, and hence
of limited use for simulations of the ISM. Versions of the
PPM scheme have been incorporated in community codes
such as ENZO? and FLASHS.

Codes based on straightforward finite difference meth-
ods, rather than Rieman solvers, have also been used in
applications to star formation and interstellar turbulence,
such as the Zeus code* (Stone and Norman 1992a,b) and

http://www.Icse.umn.edu/
2http://cosmos.ucsd.edu/enzo/
3http://flash.uchicago.edu/website/nome/
4http://cosmos.ucsd.edu/



the Stagger Code® (Nordlund and Galsgaard 1995). Finite
difference codes address the problem of supersonic turbu-
lence with the introduction of localized numerical viscos-
ity to stabilize the shocks while keeping viscosity as low
as possible away from shocks. The main advantages of this
type of codes, compared with Rieman solvers, are their flex-
ibility in incorporating new physics and their computational
efficiency.

Fixed—grid codes cannot achieve the dynamical range
required for problems involving the gravitational collapse
of protostellar cores. To address these problems numerical
methods used for fixed—grid codes must be generalized into
AMR schemes.

3.b.4 Adaptive Mesh Refinement Hydrodynamics and
Nested Grids

Self-gravitational hydrodynamics involves the collapse
and fragmentation of an unstable cloud into smaller con-
densations. Fragmentation is essential to understanding the
formation of stars and galaxies, yet gaseous flows under-
going frgamentation naturally involve a substantial three-
dimensional variation in length and density scale. This
enormous dynamic range presents a formidable obstacle to
obtaining an accurate numerical solution, as the flow must
remain well-resolved throughout the evolution. The res-
olution required after considerable collapse is well in ex-
cess of that needed initially. Dynamic range in scale of
10* and density of 10° or more is not unusual. Fixed-
resolution methods cannot be used to simulate such a 3-D
collapse in a practical amount of time using current com-
puters. The adaptive mesh refinement (AMR) scheme uti-
lizes underlying rectangular grids at different levels of res-
olution. Linear resolution varies by integral refinement
factors—usually 4—between levels, and a given grid is al-
ways fully contained within one at the next coarser level
(excluding the coarsest grid). The origin of the method
stems from the seminal work of Berger and Oliger (1984)
and Berger and Collela (1989). The AMR method can em-
ploy multiple spatially unconnected grids at a given level
of refinement. Most importantly, the AMR method dynam-
ically resizes and repositions these grids and inserts new,
finer ones within them according to adjustable refinement
criteria such as the numerical Jean condition (Truelove et
al., 1997). Fine grids are automatically removed as flow
conditions require less resolution. During the course of the
calculation, some pointwise measure of the error is com-
puted at frequent intervals — typically every other time step.
At those times, the cells that are identified are covered by
a relatively small number of rectangular patches, which are
refined by some even integer factor. Refinement is in both
time and space, so that the calculation on the refined grids
is computed at the same CFL number as that on the coarse
grid. This procedure is applied recursively. The overall al-
gorithm is fully conservative: the finite difference approx-
imations on each level are in conservation form, as is the

5www.astro.ku.dk/StaggerCode/
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coupling at the interface between grids at different levels
of refinement. AMR has three substantial advanatges over
standard SPH. Combined with high order Godunov meth-
ods, AMR acheives a much higher resolution of shocks.
This is important in obtaining accuracy in supersonic tur-
bulent flows in star forming clumps and cores and in ac-
cretion shocks onto forming protostars. AMR allows high
resolution at all points in the flow as dictated by the physics.
Unlike SPH, whereby particles are taken from low mass re-
gions to follow high mass regions thereby deteriorating the
accuracy elsewere else in the domain, AMR maintains high
order accuracy everwhere. AMR has as its basis, fixed Eule-
rian grids and thus can take advantage of sophisticated algo-
rithms to incoporate magnetic fields and radiative transfer.
This is far more difficult in a particle based scheme. AMR
was first introduced into astrophysics by Klein et al. (1990,
1994) and has been used extensively both in low mass and
high mass star formation simulations (Truelove et al., 1998;
Klein, 1999; Klein et al., 2000; Klein et al., 2003; Klein,
2004; Krumholz et al., 2005.

There are several ways to implement AMR. They can
broadly be divided into two categories: Meshes with fixed
number of cells, such as in lagrangian or rezoning ap-
proaches, and meshes with variable number of cells, such
as unstructured finite elements, structured cell-by—cell and
structured sub—grid blocks. For various reasons the most
widely adopted approaches in astrophysics are structured
sub—grid blocks and cell-by—cell. The first was developed
by Berger & Oliger (1984) and Berger & Collela (1989)
and uses variable sized patches of refined regions. It is
used in the AMR code developed by Klein and collaborators
(Klein, 1999; Crockett et al., 2005) and in the community
code ENZO Bryan & Norman 2000). The cell-by—cell ap-
proach is based on the refinement of individual mesh cells
into 8 adjacent child cells of half the size of the parent cell
(a so called oct-tree in 3D), such as in PARAMESH (Mac-
Neice et al., 2000), which is used in the community code
Flash (Banerjee et al. 2004). A hybrid approach used in
the code NIRVANA (Ziegler 2005) uses refinement blocks
of fixed size (42 in 3D) and is again based on an oct-tree
data structure as in PARAMESH. The cell-by—cell method
has the advantages of flexible and efficient refinement pat-
terns and low memory overhead and the disadvantages of
expensive interpolation and derivation formulae and large
tree data structures. The sub—grid block method is more
efficiency and more suitable for shock capturing schemes
than the cell-by—cell method, at the price of some memory
overhead.

Finally, nested grids consisting of concentric hierarchi-
cal rectangular subgrids can also be very effective for prob-
lems of well defined geometry (Yorke et al. 1993). These
methods are suitable for tracing the non-homologous run-
away collapse of an initially symmetrical cloud in which the
coordinates of a future dense region are known in advance
(Tomisaka 1998). The finest subgrid is added dynamically
when spatial resolution is needed as in AMR methods.



3.b.5 Approaches for Magneto—Hydrodynamics

Since strong shocks often appear in the astrophysical
phenomena, a shock—capturing scheme is needed also in
MHD. Upwind schemes based on the Riemann solver are
used as the MHD engine. Schemes well known in hy-
drosimulation, such as Roe’s approximate Riemann solver
(Brio & Wu 1988; Ryu & Jones 1995; Nakajima & Hanawa
1996), piecewise parabolic method (PPM; Dai & Wood-
ward 1994), are also applicable to MHD.

Divergence-free B-field: Special attention should be paid
to guarantee divB 0 in MHD simulations. To en-
sure that the divergence of Maxwell stress tensor T';; =
—(1/4m)B;B; + (1/8m)B?4;; gives the Lorentz force,
the first term of right-hand side 9,(B;B;) must equal to
B;0;B;. This requires B;0;B; = 0 and means that a fic-
titious force will appear along the B-field if the condition
of divergence-free is broken. Divergence of B-field ampli-
fies the instability of the solution even for a linear wave.
Thus, it is necessary for the MHD scheme to keep the di-
vergence of B-field zero within a round-off error or at least
small enough. This divergence-free nature should be satis-
fied for the boundaries of subgrids in AMR and nested grid
schemes.

One realization has been done by “constrained trans-
port (CT)” (Evans & Hawley 1988), in which the staggered
collocation of the components of B-field on the cell faces
makes the numerical divergence vanish exactly. In the stag-
gered collocation, the electric field —v x B of the induction
equation ;B = V x (17 x B) is evaluated on the edge of
the cell-face and the line integral along the edge gives the
time difference of a component of the B-field. Note that the
electric field on one edge appears twice to complete the in-
duction equation. To vanish the divergence of B-field, CT
requires the two evaluations to coincide each other. To uti-
lize the Godunov-type Riemann solver along the context of
CT, Balsara & Spicer (1999) proposed a scheme as follows:
(1) face-centered B-field is interpolated to the cell center;
(2) from the cell-centered variables, numerical flux at the
cell face is obtained using a Riemann solver; (3) the flux is
interpolated to the edge of the cell-face and the electric field
in the induction equation is obtained; (4) new face-centered
B-field is obtained from the induction equation. Variants of
this method are widely used [see also Ryu et al. (1998) and
Ziegler (2004)].

Avoiding staggered collocation of B-field requires diver-
gence cleaning. In this case, divergence cleaning is realized
by replacmg the B-field every step as Brew — B — Vo,
where V2& = div (Hodge prolectlon) or by solving a
diffusion equation for div B as 9, B = nV(V - B). The for-
mer is combined with pure Godunov-type Riemann solvers
using only cell-centered variables (Ryu et al. 1995). Crock-
ett et al. (2004) reported that the divergence cleaning of the
face-centered B-field appearing in the numerical flux based
on an unsplit, cell-centered Godunov scheme improves its
accuracy and stability.

Powell et al. (1999) proposed a different formalism, in
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which div B term is kept in the MHD equations as a source
(e.g. the Lorents force (V x B) x B /4 gives an extra term
related to div B as —BV - B beside the Maxwell stress
tensor term —717;, in the equation for momentum density.)
In this formalism, div B is not amplified but advected along
the flow.

Comparison between various methods is found in T 6th
(2000), Dedner et al. (2002), Balsara & Kim (2004), and
Crocket et al. (2004).

There have been attempts to solve the induction equa-
tion with SPH methods (e.g. Stellingwerf & Peterkin, 1994;
Byleveld & Pongracic, 1996; Price & Monaghan, 2003,
2005). A major obstacle is an instability that develops when
the momentum and energy equations are written in conser-
vation form. As a result, the equations must be written in
a way that does not conserve momentum (Phillips & Mon-
aghan, 1985; Morris, 1996), which is a major concern for
the accurate treatment of shocks. Results of recent tests of
the state—of-the—art SPH MHD code (Price & Monaghan,
2005) appear to be rather poor even for very mild shocks.

3.b.6 Approaches for Radiation Transport

Several levels of improvement can be made over replac-
ing a barotropic EOS with a formulation of the radiation
transport but each level comes with increased cost and com-
plexity. Excellent discussions of the details of these meth-
ods may be found in Mihalas and Mihalas (1984) and Cas-
tor (2004). Here we will briefly describe the methods.

The simplest improvement of radiation transfer beyond
a barotropic stiffened EOS is the diffusion approximation
which pertains to the limit in which radiation can be treated
as an ideal fluid with small corrections. The approximation
holds when the photon mean free path is small compared
with other length scales. The combined energy equation for
the gas and radiation results in an implicit non-linear dif-
fusion equation for the temperature. The weakness of the
diffusion approximation is that it is strictly applicable to op-
tically thick regimes and performs poorly in optically thin
regions. This can be severe in optically thin regions of an
inhomogeneous turbulent core or in the optically thin atmo-
sphere surrounding a developing protostar. The next level
of approximation is the Eddington approximation (Boss and
Myhill, 1992;Boss et al., 2000). It can be shown that the dif-
fusion approximation leads directly to Eddington’s approx-
imation P, = %E,,I where P,, is the pressure tensor moment
of the specific intensity of radiation, E,, is the scalar en-
ergy density of radiation an | is the isotropic identity tensor.
This approximation, coupled with dropping the time depen-
dent term in the 2nd moment equation of transfer results in
a combined parabolic 2nd order time dependent diffusion
equation for the energy density of the radiation field. This
formulation of the Eddington appoximation is used in Boss
et al. (2000). The approximation results in a loss of the
finite propagation speed of light ¢ and a loss of the radia-
tion momentum density, thus there is an error in the total
momentum budget. In optically thin regions, the radiation
flux can increase without limit. An alternative approach that



modifies the Eddington approximation, compensates for the
errors made in dropping the time dependent flux term by
including a correction factor in the diffusion coefficient for
the radiation flux. This correction factor, called a flux lim-
iter, is in general a tensor and has the property that the flux
goes to the diffusion limit at large optical depth and it cor-
rectly limits the flux to be no larger than cFE in the opti-
cally thin regime. This improvement over the Eddington
approximation has been used by Klein et al. (2004) for
the simulation of both low mass and high mass star forma-
tion. The resulting sparse matrices introduced by the diffu-
sion like terms are solved by multi-grid iterative methods in
and AMR framework. Both the Eddington approximation
and the flux-limiting correction make errors on the order of
20%. The next level of approximation, the variable Edding-
ton tensor method, removes all of the inaccuracies of the
Eddington approximation and the flux limiter modification.
It was first formulated in multi-dimensions for astrophysical
problems by Dykema et al. (1996). In essence, if the pre-
cise ratio of the pressure tensor to the energy density were
included as an ad hoc multiplier in the Eddington approxi-
mation equations they would represent an exact closure of
the system. The tensor ratio is obtained iteratively from ei-
ther an auxialliary solution of the exact transport equation
for the specific intensity or using an approximate analytic
representation of the tensor. This method holds promise
for future simulations but has yet to be used in star forma-
tion. The final two approaches which are highly accurate
and deal with the angle dependent transport equation di-
rectly are Sy methods and Monte Carlo methods. They
have not yet been developed for simulations in star forma-
tion because the cost in 3D is prohibitive. The Sy method
is a short characteristic method in which a bundle of rays
is created at every mesh point and are extended in the up-
wind direction only as far as the next spatial cell. The main
problem is in finding the efficient angle set to represent the
radiation field in 2 or 3 dimensions Castor (2004). Finally,
one might consider MonteCarlo methods to solve the trans-
port equation. Although simple to implement (its great ad-
vantage), this method suffers from needing a vast number
of operations per timestep to get accurate statistics in fol-
lowing the particles used to track the radiation field.

Radiative transfer implementations have recently been
developed also for SPH methods, based on the diffusion
approximation (Whitehouse, Bate and Monaghan, 2005)
or the Monte Carlo method (Stamatello % Whitworth,
2003,2005).

3.b.7 In-Depth Contrast of Various Methods

Based on the physical processes and numerical method-
ologies discussed in the previous sections we can compare
numerical schemes according to their ability to handle the
following problems both accuratly and efficiently: (a) tur-
bulence, (b) strong socks, (c) self-gravity, (d) magnetic
fields, (e) radiative transfer.

The standard SPH method has been successful with (c)
and implementations of (e) have been recently developed in

12

the diffusion approximation (Whitehouse, Bate and Mon-
aghan, 2005) and with a Monte Carlo method (Stamatello
% Whitworth, 2003,2005). It does not include (d), it is
well known to be inadequate for (b) and has had virtually
no applications to (a) to date. As any Lagrangian parti-
cle methods, SPH provides good resolution in high density
regions, but very poor in low density ones, where a cor-
rect description of the velocity field is therefore compro-
mised. The Godunov SPH method improves the standard
SPH codes because of its ability to address (b), but does not
provide a solution to (d) and is untested for (a) as well. Al-
tough MHD is currently under development in SPH, results
of standard MHD tests with a state—of—the—art code show
the need for significant improvements even in the case of
very mild shocks (Price & Monaghan, 2005). Current ap-
plications of SPH should therefore be limited to non-MHD
problems and the accuracy and performance of SPH with
turbulent flows must be thouroghly tested.

In hydrodynamical problems, the state—of-the—art grid—
based methods such as MUSCL (van Leer 1979) and PPM
(Colella and Woodward 1984) use exact Riemann Solvers
to construct the numerical fluxes and provide very accu-
rate description in astrophysical flows with strong shocks
(b). They have also been thouroghly tested with compress-
ible turbulent flows, particularly PPM, for which they are
the undisputed methods of choice, and MHD versions have
been developed that can address both (d) and (e). Tradi-
tional finite—difference grid—based schemes are still viable
alternative though, because the best of them can also accu-
rately address (a), (b), (d) and (e), at a lower cost of code
development and computer resources. Point (c) can also be
efficiently dealt with by grid—-based codes thanks to AMR
methods. However, the development of AMR schemes that
satisfy (c) and at the same time (d) has begun only recently.
These schemes exist and have been succesfully tested, but
it is unclear at present which approach will provide the best
trade off between accuracy and performance.

The constrained transport method appears to be the ideal
one to guarantee the V - B = 0 condition. Various schemes
have been proposed even in the category of Godunov-type
methods with a linearized Riemann Solver. An exact MHD
Riemann Solver would be more adequate to handle strong
shocks, but it is not available yet. In MHD we have to
solve seven characteristics even in one—dimensional prob-
lems, which hinders an efficient construction of numerical
fluxes based on the non-linear waves. Furthermore, the dis-
covery of the existence of the MHD intermediate shocks
(Brio and Wu 1988) brings an additional difficulty in the
categorization and prediction of the emerging non-linear
waves. Among possible solutions, a linearized Riemann
Solver with artificial viscosity may still be a useful option.

The Godunov MHD code of Crockett et al (2004)
has been merged with the AMR RHD code of Klein et
al. (2004) into the first fully devloped AMR magneto—
radiation—-hydrodynamic code to be used in simulations of
star formation.



4. RESULTS OF NUMERICAL SIMULATIONS
AND CONFRONTATION WITH THE OBSERVA-
TIONS

4.a Fragmentation of molecular clouds into filaments
and cores from the interaction of turbulence, gravity
and magnetic fields

Simulations of supersonic turbulence generate complex
density fields reminiscent of observed star forming clouds.
Because random supersonic flows are directly observed in
molecular clouds, there is little doubt that the observed den-
sity structure is related to the density enhancements found
in numerical simulations of supersonic turbulence. A care-
ful comparison between models and observations may even
shed light on the relative importance of turbulence, gravity
and magnetic fields.

Such a comparison was pioneered by Falgarone et al.
(1994) and later continued by many others (e.g. Padoan
et al. 1998,1999; Padoan et al. 2001; Ostriker, Stone and
Gammie 2001; Ballestero-Paredes and Mac Low 2002; Os-
senkopf 2002; Padoan et al. 2004; Gammie et al. 2003;
Klessen et al. 2005). Important results have been ob-
tained by these comparisons. However, with the excep-
tion of the various works by Padoan et al. and the work
of Ossenkopf (2002), where post—processed three dimen-
sional non—LTE radiative transfer calculations were carried
out, all other studies are based on a superficial comparison
between densities and velocities in the simulations and the
observed quantities. Only detailed radiative transfer cal-
culations on the results of numerical simulations can turn
the observational data into a useful probe of the dynami-
cal conditions in molecular clouds. For example, Padoan
et al (1998) predicted the ratios of line width and intensi-
ties of different molecular transitions. By computing syn-
thetic spectra of the J=1-0 transition of 13CO and compar-
ing them with 13CO surveys of molecular clouds, Padoan et
al (2001) found strong evidence that density enhancements
in molecular clouds originate from turbulent shock com-
pressions, like in the simulations, and not from gravitational
instabilities. With similar radiative transfer calculations, but
also involving the self-consistent calculation of the three—
dimensional equilibrium temperature distribution, Padoan
et al (2004) were able to accurately compare the projected
density power spectra in numerical simulations and in ob-
servations of molecular cloud complexes. That work ruled
out a large value of the mean magnetic field strength in the
observed regions.

Important works that neglected radiative transfer effects
include i) the study of velocity scaling, showing that molec-
ular cloud turbulence is driven on large scale (e.g. Os-
senkopf and Mac Low 2002; Heyer and Brunt 2004); ii) the
study of core properties, showing that turbulent flows natu-
rally generate dense cores with shapes, internal turbulence,
rotation velocity and magnetic field strength consistent with
the observations (e.g. Padoan et al. 1999; Gammie et al.
2003; Tilley and Pudritz 2004,2005; Li et al. 2004).
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In principle the stellar IMF is the final outcome of the
same fragmentation process responsible for the cloud struc-
ture and morphology. However, the comparison between
the mass distribution of sink particles in SPH simulations of
cloud fragmentation and the stellar IMF are not considered
here as a tool to constrain the dynamical models of star—
forming cloud. As explained in section I1l.al, a description
of the process of turbulent fragmentation accurate enough
to correctly describe the initial conditions for the gravita-
tional collapse is beyond the capability of present day SPH
simulations that largely underestimate the effect of small
scale turbulence.

4.b Collapse and Fragmentation of Molecular Cloud
Cores into Low Mass Stars

As we have stated, over the past several years two domi-
nant models of how stars form have emerged and these two
camps can be described as gravitational collapse and com-
petitive accretion. In both theories, a star initially forms
when a gravitational bound gas collapses, but there is a cru-
cial distinction between them as to what they predict will
happen subsequently (Krumholz et al., 2005a). In the grav-
itational collapse scenario, after a protostar has consumed
or expelled all the gas in its initial core, it may continue
accreting from the parent clump, however, it will not ac-
crete enough to significantly alter its mass (McKee and Tan,
2003; Padoan et al., 2005). Competitive accretion, in con-
trast, requires that the amount accreted after consuming the
initial core be substantially larger than the protostar mass.
Simply put, a clean way to look at this following Krumholz
etal., 2005a is to define f,,, = r.tqyn /1. as the fractional
change in mass that a protostar of mass m .. undergoes each
dynamical time ¢4,,, Of its parent clump, starting after the
initial core has been consumed by the accreting protostar.
Gravitational theory suggests that f,, < 1, while compet-
itive accretion requires f,, > 1. In recent work examin-
ing the plausibility of competitive accretion, Krumholz et
al. 2005a considered two possible geometries; both spher-
ical clumps and filaments. It is reasonable that these ex-
tremes bracket realistic star-forming clumps. In the first
scenario they examined, they suppose that the gas the pro-
tostar is accreting is not accumulated into bound structures
on scales smaller than the entire clump. For unbound gas,
self-gravity may be neglected and the entire problem can be
treated as Bondi-Hoyle accretion in a turbulent medium of
non-self-gravitating gas onto a point particle. In a compan-
ion paper (Krumholz et al., 2005b) they develop the theory
for Bondi-Hoyle accretion in a turbulent medium and show
that such accretion is bi-modal, at some points resembling
classical Bondi-Hoyle flow, and in other cases being closer
to the vorticity—dominated flows recently consdiered by
Krumholz et al., 2004. Using this newly developed theory
they derive the accretion rate for such a turbulent medium
and they confirm their theory with detailed, high resolution,
converged AMR simulations. By using this accretion rate
and the definitions of the virial parameter aiy = M i /M



and the dynamical time ¢4y, = R/o wWhere o is the velocity
dispersion in the gas, they show that the accretion of un-
bound gas gives fu_pu = (14.4,3.08%)¢prani 2(5)
for a (spherical, filamentary) star—forming region where
¢pn represents the effects of turbulence (Krumholz et al.,
2005a). From this it is clear that competitive accretion is
most effective in low mass clumps with virial parameters
ayir < 1. They then examined the observed properties
of a large range of star forming regions spanning both low
mass and high mass stars and computed the properties for
each region yielding avir, ¢y and fn,_gu. In virtually
every region examined, the virial parameter ay;, > 1 and
fm—Bu < 1. Thus none of the star—forming regions are
consistent with competitive accretion, but all are consistent
with gravitational collapse. The Bondi-Hoyle rate is an up-
per limit on the accretion so that estimates for f,, gy are
the most favorable for competitive accretion and its true
value is most likely even lower. As has been shown by
Bonnell et al. (2001) in a study of competitive accretion
in embedded stellar clusters, if the stars are sufiently close-
packed, their tidal radii will be smaller than their Bondi-
Hoyle radii and the accretioon will be lower. Furthermore,
if one considers stars more massive than ~ 10M © radia-
tion pressure will halt Bondi-Hoyle accretion onto the stars
(Edgar and Clarke, 2004). In a second possible competi-
tive accretion scenario Krumholz et al. (2005a) examined
another way that a star could increase its mass by capturing
and accreting other gravitationally bound cores. By analyz-
ing the critical velocity below which any collision leads to
a capture and above which it will not, and observing that
cores within a molecular clump have roughly the same sur-
face density as the parent clump (Larson, 191) they com-
pute the escape velocity from the surface of a core in terms
of the properties of the clump. This enables them to com-
pute the amount of mass that a protostar can gain by cap-
ture of ther cores. This results in the calculation of f ., _cap,
the fractional change in mass that a protostar undergoes by
capturing bound cores. The evaluation of f,_..p, depends
on the fraction of the parent clump mass that is in bound
cores. This is generally observed through surveys to be ~
0.1 (Motte et al., 1998; Johnstone et al., 2001). As found
with f.,_gg, all the values are estimated to be three more
orders of magnitude below unity. One can ask the question
is there any region in parameter space for a cloud clump
to have fr, = fm—BH + fm—cap > 1. Krumholz et al.
(2005a) find that f,, > 1 only for a;2M < 8.4Mg. Ob-
served star forming regions typically have a;, ~ 1 and
M =~ 10%? — 10*M®. Therefore no known star-forming
region has a.;,2M < 8.4M, for competitive accretion to
work.

If competitive acceretion is clearly not supported by ob-
servations in any known star forming region, why do the
simulations (Bonnell et al.,1998; Bonnell et al., 2001; Bon-
nell et al,2001a; Bate et al., 2005) almost invariably find
competitive accretion to work? Is there a fundamental flaw
in the methodology used in competitive accretion scenarios
(SPH) or is the problem one of physics and initial condi-
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tions? As Krumholz et al. (2005a) point out, all compet-
itive accretion have virial parameters a.i; < 1. Some of
the simulations start with a.;, = 0.01 as a typical choice
(Bonnell et al., 2001a; Bonnell et al., 2001b; Klessen and
Burkert, 2000; Klessen and Burkert, 2001). For other sim-
ulations the virial parameter is initially of order unity but
decreases to < 1 in a crossing time as turbulence decays
(Bonnell et al., 2004; Bate et al., 2002a; Bate et al., 2003;
Bate et al., 2002b). It is also noteworthy that many of
the simulations begin with clumps of mass considerably
smaller (M < 100Mg) than that typically found in star
forming regions ~ 5000M ® (Plume et al., 1997). As a re-
sult these simulations have av;,2 M < 10M, which is why
they erroneously find competitive accretion to be important
(Krumholz et al. 2005a). Krumholz et al., 2005a also point
to three other features of the simulations that would further
increase their estimate of f,,. One such example is that
the small virial parameters found in competitive accretion
simulations causes a too rapid global collapse of clumps re-
sulting in a large fraction of their mass to becme stars in a
crossing time. As a result, this deprives the clump the time
needed for large cores to assemble and only small cores
form. Without large cores, large stars can only form via
competitive accretion. As an example a recent simulation
of a ~ 1000M¢ clump produced cores no larger than 1
M® (Bonnell et al., 2004), substantially inconsistent with
observations that find many cores more massive than this in
similar star forming regions (Johnstone et al., 2001; Plume
etal., 1997.

The results of this work indicate that there are three se-
rious problems with simulations of competitive accretion
leading to their inconsistency with observations of star—
forming regions. Paramount among them, the chief reason
they evolve to ayi, < 1 is that they omit feedback from star
formation. Observations by Quillen et al., (2005) show that
outflows inject enough energy to sustain turbulence thereby
keeping the virial parameter from declining to values much
less than unity. Another problem is that the simulations con-
sider isolated clumps with too little material. Real clumps
embedded in larger molecular clouds have large scale tur-
bulent motions that can cascade down to the clump scale
preventing turbulent decay.

In conclusion, it appears that seed protostars cannot gain
mass efficiently by competitive accretion processes in any
observed star—forming clump that is approximately in virial
balance. There is no observational evidence for the exis-
tence of any regions that are far from virial balance that
competitive accretion models require to be effective. This
suggests that current simulations showing the importance of
competitive accretion are missing crucial physics and this
is the key reason that they are to date, unable to model the
observations of star—forming regions. It follows that com-
petitive accretion is not a viable mechanism for producing
the IMF. This recent theoretical work combined with obser-
vational evidence gives strong support to gravitational col-
lapse over competitive accretion as the leading model for
low mass star formation.
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